Exploring OpenAI’s GPT Models: Word Up! Bot

Let’s create a comprehensive guide for implementing a conversational bot using OpenAI’s GPT models across AWS, GCP, and Azure, with code examples and cost comparisons.

Understanding GPT Models

OpenAI’s Generative Pre-trained Transformer (GPT) models represent some of the most advanced language models available today. These models are trained on vast amounts of text data and can generate human-like text, translate languages, write different kinds of creative content, and answer questions in an informative way.

Key GPT model variations include:

  • GPT-3.5 (e.g., ChatGPT)
  • GPT-4
  • GPT-4 Turbo
  • GPT-4o

Each model varies in capabilities, token limits, and cost structures.

Word Up! Bot: A Conversational Assistant

Let’s create a “Word Up! Bot” – a conversational assistant that can:

  1. Answer questions about cloud technologies
  2. Generate code examples on demand
  3. Translate technical concepts across cloud platforms
  4. Summarize technical documentation

Implementation Across Cloud Platforms

AWS Implementation

AWS Lambda Function for Word Up! Bot

import json
import os
import boto3
import openai
from aws_lambda_powertools import Logger, Tracer, Metrics
from aws_lambda_powertools.event_handler import APIGatewayRestResolver
from aws_lambda_powertools.utilities.typing import LambdaContext

# Initialize utilities
logger = Logger()
tracer = Tracer()
metrics = Metrics()
app = APIGatewayRestResolver()

# Initialize DynamoDB
dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table(os.environ.get('CONVERSATION_HISTORY_TABLE'))

# Initialize OpenAI client
openai.api_key = os.environ.get('OPENAI_API_KEY')

@app.post("/chat")
@tracer.capture_method
def chat():
    try:
        # Parse request
        request_body = app.current_event.body
        body = json.loads(request_body)
        user_id = body.get('user_id')
        message = body.get('message')
        
        # Get conversation history
        history = get_conversation_history(user_id)
        
        # Prepare messages for OpenAI
        messages = [
            {"role": "system", "content": "You are Word Up! Bot, a helpful assistant that specializes in cloud technologies."}
        ]
        
        # Add conversation history
        for msg in history:
            messages.append(msg)
        
        # Add the current message
        messages.append({"role": "user", "content": message})
        
        # Call OpenAI
        response = openai.ChatCompletion.create(
            model="gpt-4-turbo",
            messages=messages,
            temperature=0.7,
            max_tokens=1000
        )
        
        # Extract assistant's reply
        assistant_message = response['choices'][0]['message']['content']
        
        # Store the conversation
        store_message(user_id, "user", message)
        store_message(user_id, "assistant", assistant_message)
        
        # Return response
        return {
            "statusCode": 200,
            "body": json.dumps({
                "message": assistant_message
            })
        }
    except Exception as e:
        logger.exception("Error processing request")
        return {
            "statusCode": 500,
            "body": json.dumps({
                "error": str(e)
            })
        }

def get_conversation_history(user_id, limit=10):
    response = table.query(
        KeyConditionExpression=boto3.dynamodb.conditions.Key('user_id').eq(user_id),
        Limit=limit * 2,  # Multiply by 2 because we store user and assistant messages separately
        ScanIndexForward=False  # Get most recent messages first
    )
    
    # Sort by timestamp
    messages = sorted(response.get('Items', []), key=lambda x: x['timestamp'])
    
    # Format for OpenAI API
    return [{"role": msg['role'], "content": msg['content']} for msg in messages]

def store_message(user_id, role, content):
    table.put_item(
        Item={
            'user_id': user_id,
            'message_id': f"{user_id}_{int(datetime.now().timestamp())}",
            'role': role,
            'content': content,
            'timestamp': datetime.now().isoformat()
        }
    )

@logger.inject_lambda_context
@tracer.capture_lambda_handler
@metrics.log_metrics
def lambda_handler(event, context: LambdaContext):
    return app.resolve(event, context)

AWS CloudFormation Template for Word Up! Bot

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Word Up! Bot - OpenAI GPT Integration'

Parameters:
  OpenAIApiKey:
    Type: String
    NoEcho: true
    Description: Your OpenAI API Key

Resources:
  # DynamoDB Table for conversation history
  ConversationHistoryTable:
    Type: AWS::DynamoDB::Table
    Properties:
      TableName: WordUpBotConversations
      BillingMode: PAY_PER_REQUEST
      AttributeDefinitions:
        - AttributeName: user_id
          AttributeType: S
        - AttributeName: message_id
          AttributeType: S
      KeySchema:
        - AttributeName: user_id
          KeyType: HASH
        - AttributeName: message_id
          KeyType: RANGE
      TimeToLiveSpecification:
        AttributeName: ttl
        Enabled: true

  # Lambda execution role
  LambdaExecutionRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: '2012-10-17'
        Statement:
          - Effect: Allow
            Principal:
              Service: lambda.amazonaws.com
            Action: sts:AssumeRole
      ManagedPolicyArns:
        - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
      Policies:
        - PolicyName: DynamoDBAccess
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              - Effect: Allow
                Action:
                  - dynamodb:Query
                  - dynamodb:PutItem
                Resource: !GetAtt ConversationHistoryTable.Arn

  # Lambda function
  WordUpBotFunction:
    Type: AWS::Lambda::Function
    Properties:
      FunctionName: WordUpBotFunction
      Runtime: python3.9
      Handler: app.lambda_handler
      Role: !GetAtt LambdaExecutionRole.Arn
      Timeout: 30
      MemorySize: 256
      Environment:
        Variables:
          OPENAI_API_KEY: !Ref OpenAIApiKey
          CONVERSATION_HISTORY_TABLE: !Ref ConversationHistoryTable
      Code:
        ZipFile: |
          # Lambda function code would be deployed separately, not inline
          def lambda_handler(event, context):
              return {"statusCode": 200, "body": "Function placeholder"}

  # API Gateway REST API
  WordUpBotApi:
    Type: AWS::ApiGateway::RestApi
    Properties:
      Name: WordUpBotApi
      Description: API for Word Up! Bot

  # API Gateway resource
  ChatResource:
    Type: AWS::ApiGateway::Resource
    Properties:
      RestApiId: !Ref WordUpBotApi
      ParentId: !GetAtt WordUpBotApi.RootResourceId
      PathPart: chat

  # API Gateway method
  ChatMethod:
    Type: AWS::ApiGateway::Method
    Properties:
      RestApiId: !Ref WordUpBotApi
      ResourceId: !Ref ChatResource
      HttpMethod: POST
      AuthorizationType: NONE
      Integration:
        Type: AWS_PROXY
        IntegrationHttpMethod: POST
        Uri: !Sub arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${WordUpBotFunction.Arn}/invocations

  # API Gateway deployment
  ApiDeployment:
    Type: AWS::ApiGateway::Deployment
    DependsOn: ChatMethod
    Properties:
      RestApiId: !Ref WordUpBotApi
      StageName: prod

  # Lambda permission for API Gateway
  ApiGatewayInvokeLambdaPermission:
    Type: AWS::Lambda::Permission
    Properties:
      FunctionName: !Ref WordUpBotFunction
      Action: lambda:InvokeFunction
      Principal: apigateway.amazonaws.com
      SourceArn: !Sub arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${WordUpBotApi}/*/POST/chat

Outputs:
  ApiEndpoint:
    Description: API Endpoint URL
    Value: !Sub https://${WordUpBotApi}.execute-api.${AWS::Region}.amazonaws.com/prod/chat
  DynamoDBTableName:
    Description: DynamoDB Table Name
    Value: !Ref ConversationHistoryTable

GCP Implementation

GCP Cloud Function for Word Up! Bot

import os
import json
import functions_framework
from google.cloud import firestore
import openai
import datetime

# Initialize Firestore client
db = firestore.Client()

# Initialize OpenAI client
openai.api_key = os.environ.get('OPENAI_API_KEY')

@functions_framework.http
def word_up_bot(request):
    """
    HTTP Cloud Function to interact with OpenAI's GPT.
    """
    # Set CORS headers for preflight requests
    if request.method == 'OPTIONS':
        headers = {
            'Access-Control-Allow-Origin': '*',
            'Access-Control-Allow-Methods': 'POST',
            'Access-Control-Allow-Headers': 'Content-Type',
            'Access-Control-Max-Age': '3600'
        }
        return ('', 204, headers)

    # Set CORS headers for main request
    headers = {
        'Access-Control-Allow-Origin': '*'
    }

    try:
        # Parse request data
        request_json = request.get_json(silent=True)
        
        if not request_json:
            return (json.dumps({'error': 'No request data provided'}), 400, headers)
        
        user_id = request_json.get('user_id')
        message = request_json.get('message')
        
        if not user_id or not message:
            return (json.dumps({'error': 'Missing required fields: user_id and message'}), 400, headers)
        
        # Get conversation history
        history = get_conversation_history(user_id)
        
        # Prepare messages for OpenAI
        messages = [
            {"role": "system", "content": "You are Word Up! Bot, a helpful assistant that specializes in cloud technologies."}
        ]
        
        # Add conversation history
        for msg in history:
            messages.append(msg)
        
        # Add the current message
        messages.append({"role": "user", "content": message})
        
        # Call OpenAI
        response = openai.ChatCompletion.create(
            model="gpt-4-turbo",
            messages=messages,
            temperature=0.7,
            max_tokens=1000
        )
        
        # Extract assistant's reply
        assistant_message = response['choices'][0]['message']['content']
        
        # Store the conversation
        store_message(user_id, "user", message)
        store_message(user_id, "assistant", assistant_message)
        
        # Return response
        return (json.dumps({'message': assistant_message}), 200, headers)
    
    except Exception as e:
        print(f"Error: {str(e)}")
        return (json.dumps({'error': str(e)}), 500, headers)

def get_conversation_history(user_id, limit=10):
    """
    Retrieve conversation history from Firestore.
    """
    # Reference to the conversation collection
    conversations_ref = db.collection('conversations')
    
    # Query messages for this user, ordered by timestamp
    query = conversations_ref.where('user_id', '==', user_id).order_by('timestamp').limit(limit * 2)
    
    # Execute query and format messages for OpenAI API
    messages = []
    for doc in query.stream():
        data = doc.to_dict()
        messages.append({"role": data['role'], "content": data['content']})
    
    return messages

def store_message(user_id, role, content):
    """
    Store a message in Firestore.
    """
    # Reference to the conversation collection
    conversations_ref = db.collection('conversations')
    
    # Prepare document data
    now = datetime.datetime.now()
    message_data = {
        'user_id': user_id,
        'role': role,
        'content': content,
        'timestamp': now,
        'ttl': now + datetime.timedelta(days=30)  # TTL for message deletion after 30 days
    }
    
    # Add document to collection
    conversations_ref.add(message_data)

GCP Terraform for Word Up! Bot

provider "google" {
  project = var.project_id
  region  = var.region
}

# Variables
variable "project_id" {
  description = "GCP Project ID"
  type        = string
}

variable "region" {
  description = "GCP Region"
  default     = "us-central1"
}

variable "openai_api_key" {
  description = "OpenAI API Key"
  type        = string
  sensitive   = true
}

# Enable required APIs
resource "google_project_service" "cloudfunctions" {
  project = var.project_id
  service = "cloudfunctions.googleapis.com"
}

resource "google_project_service" "firestore" {
  project = var.project_id
  service = "firestore.googleapis.com"
}

resource "google_project_service" "cloudbuild" {
  project = var.project_id
  service = "cloudbuild.googleapis.com"
}

# Create a storage bucket for Cloud Function code
resource "google_storage_bucket" "function_bucket" {
  name     = "${var.project_id}-word-up-bot-function"
  location = var.region
  uniform_bucket_level_access = true
}

# Create a ZIP archive of Cloud Function code
data "archive_file" "function_zip" {
  type        = "zip"
  output_path = "function-source.zip"
  source_dir  = "function-source"  # Directory containing your function code
}

# Upload the Cloud Function code to the bucket
resource "google_storage_bucket_object" "function_code" {
  name   = "function-source-${data.archive_file.function_zip.output_md5}.zip"
  bucket = google_storage_bucket.function_bucket.name
  source = data.archive_file.function_zip.output_path
}

# Create the Cloud Function
resource "google_cloudfunctions_function" "word_up_bot" {
  name        = "word-up-bot"
  description = "Word Up! Bot - OpenAI GPT Integration"
  runtime     = "python39"

  available_memory_mb   = 256
  source_archive_bucket = google_storage_bucket.function_bucket.name
  source_archive_object = google_storage_bucket_object.function_code.name
  trigger_http          = true
  entry_point           = "word_up_bot"
  
  environment_variables = {
    OPENAI_API_KEY = var.openai_api_key
  }

  depends_on = [
    google_project_service.cloudfunctions,
    google_project_service.cloudbuild
  ]
}

# IAM entry for all users to invoke the function
resource "google_cloudfunctions_function_iam_member" "invoker" {
  project        = var.project_id
  region         = var.region
  cloud_function = google_cloudfunctions_function.word_up_bot.name
  role           = "roles/cloudfunctions.invoker"
  member         = "allUsers"
}

# Output the Cloud Function URL
output "function_url" {
  value = google_cloudfunctions_function.word_up_bot.https_trigger_url
}

Azure Implementation

Azure Function for Word Up! Bot

using System;
using System.IO;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json;
using Azure.Data.Tables;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Text;

namespace WordUpBot.Function
{
    public static class WordUpBotFunction
    {
        private static readonly HttpClient httpClient = new HttpClient();
        private static readonly string OpenAIApiKey = Environment.GetEnvironmentVariable("OpenAIApiKey");
        private static readonly string TableConnectionString = Environment.GetEnvironmentVariable("TableConnectionString");
        private static readonly string TableName = "ConversationHistory";

        [FunctionName("WordUpBot")]
        public static async Task Run(
            [HttpTrigger(AuthorizationLevel.Function, "post", Route = null)] HttpRequest req,
            ILogger log)
        {
            log.LogInformation("Word Up! Bot function processed a request.");

            string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
            var data = JsonConvert.DeserializeObject(requestBody);

            if (data == null || string.IsNullOrEmpty(data.UserId) || string.IsNullOrEmpty(data.Message))
            {
                return new BadRequestObjectResult("Please pass a valid request with UserId and Message in the request body");
            }

            try
            {
                // Get conversation history
                var history = await GetConversationHistoryAsync(data.UserId);

                // Prepare messages for OpenAI
                var messages = new List
                {
                    new Message { Role = "system", Content = "You are Word Up! Bot, a helpful assistant that specializes in cloud technologies." }
                };

                // Add conversation history
                messages.AddRange(history);

                // Add the current message
                messages.Add(new Message { Role = "user", Content = data.Message });

                // Call OpenAI
                var openAiResponse = await CallOpenAIAsync(messages);

                if (openAiResponse == null)
                {
                    return new StatusCodeResult(StatusCodes.Status500InternalServerError);
                }

                // Store messages
                await StoreMessageAsync(data.UserId, "user", data.Message);
                await StoreMessageAsync(data.UserId, "assistant", openAiResponse);

                return new OkObjectResult(new { message = openAiResponse });
            }
            catch (Exception ex)
            {
                log.LogError($"Error: {ex.Message}");
                return new StatusCodeResult(StatusCodes.Status500InternalServerError);
            }
        }

        private static async Task> GetConversationHistoryAsync(string userId)
        {
            // Create table client
            var tableClient = new TableClient(TableConnectionString, TableName);
            await tableClient.CreateIfNotExistsAsync();

            // Query messages for this user
            var query = tableClient.QueryAsync(filter: $"PartitionKey eq '{userId}'");

            var messages = new List();
            await foreach (var entity in query)
            {
                messages.Add(new Message
                {
                    Role = entity.Role,
                    Content = entity.Content
                });
            }

            // Order by timestamp and take the last 10 messages
            return messages.OrderBy(m => m.Timestamp).TakeLast(10).ToList();
        }

        private static async Task StoreMessageAsync(string userId, string role, string content)
        {
            // Create table client
            var tableClient = new TableClient(TableConnectionString, TableName);
            await tableClient.CreateIfNotExistsAsync();

            // Create entity
            var entity = new ConversationEntity
            {
                PartitionKey = userId,
                RowKey = Guid.NewGuid().ToString(),
                Role = role,
                Content = content,
                Timestamp = DateTime.UtcNow
            };

            // Add entity to table
            await tableClient.AddEntityAsync(entity);
        }

        private static async Task CallOpenAIAsync(List messages)
        {
            // Set up the request to OpenAI
            var requestData = new
            {
                model = "gpt-4-turbo",
                messages = messages.Select(m => new { role = m.Role, content = m.Content }).ToArray(),
                temperature = 0.7,
                max_tokens = 1000
            };

            var content = new StringContent(JsonConvert.SerializeObject(requestData), Encoding.UTF8, "application/json");
            httpClient.DefaultRequestHeaders.Authorization = new System.Net.Http.Headers.AuthenticationHeaderValue("Bearer", OpenAIApiKey);

            var response = await httpClient.PostAsync("https://api.openai.com/v1/chat/completions", content);
            
            if (!response.IsSuccessStatusCode)
            {
                return null;
            }

            var responseString = await response.Content.ReadAsStringAsync();
            var responseObject = JsonConvert.DeserializeObject(responseString);

            return responseObject.choices[0].message.content.ToString();
        }

        public class RequestData
        {
            public string UserId { get; set; }
            public string Message { get; set; }
        }

        public class Message
        {
            public string Role { get; set; }
            public string Content { get; set; }
            public DateTime Timestamp { get; set; } = DateTime.UtcNow;
        }

        public class ConversationEntity : Azure.Data.Tables.ITableEntity
        {
            public string PartitionKey { get; set; }
            public string RowKey { get; set; }
            public DateTimeOffset? Timestamp { get; set; }
            public ETag ETag { get; set; }
            public string Role { get; set; }
            public string Content { get; set; }
        }
    }
}

Azure Bicep Template for Word Up! Bot

@description('Location for all resources.')
param location string = resourceGroup().location

@description('The name of the function app.')
param functionAppName string = 'wordupbot-${uniqueString(resourceGroup().id)}'

@description('Storage Account type')
@allowed([
  'Standard_LRS'
  'Standard_GRS'
  'Standard_RAGRS'
])
param storageAccountType string = 'Standard_LRS'

@description('OpenAI API Key')
@secure()
param openAIApiKey string

// Storage Account
resource storageAccount 'Microsoft.Storage/storageAccounts@2021-08-01' = {
  name: 'stwordupbot${uniqueString(resourceGroup().id)}'
  location: location
  kind: 'StorageV2'
  sku: {
    name: storageAccountType
  }
  properties: {
    supportsHttpsTrafficOnly: true
    minimumTlsVersion: 'TLS1_2'
  }
}

// Storage Account - Tables
resource tableService 'Microsoft.Storage/storageAccounts/tableServices@2021-08-01' = {
  name: 'default'
  parent: storageAccount
}

// Table for conversation history
resource conversationTable 'Microsoft.Storage/storageAccounts/tableServices/tables@2021-08-01' = {
  name: 'ConversationHistory'
  parent: tableService
}

// App Service Plan (Consumption)
resource appServicePlan 'Microsoft.Web/serverfarms@2021-03-01' = {
  name: 'plan-${functionAppName}'
  location: location
  sku: {
    name: 'Y1'
    tier: 'Dynamic'
  }
  properties: {}
}

// Function App
resource functionApp 'Microsoft.Web/sites@2021-03-01' = {
  name: functionAppName
  location: location
  kind: 'functionapp'
  properties: {
    serverFarmId: appServicePlan.id
    siteConfig: {
      appSettings: [
        {
          name: 'AzureWebJobsStorage'
          value: 'DefaultEndpointsProtocol=https;AccountName=${storageAccount.name};EndpointSuffix=${environment().suffixes.storage};AccountKey=${storageAccount.listKeys().keys[0].value}'
        }
        {
          name: 'WEBSITE_CONTENTAZUREFILECONNECTIONSTRING'
          value: 'DefaultEndpointsProtocol=https;AccountName=${storageAccount.name};EndpointSuffix=${environment().suffixes.storage};AccountKey=${storageAccount.listKeys().keys[0].value}'
        }
        {
          name: 'WEBSITE_CONTENTSHARE'
          value: toLower(functionAppName)
        }
        {
          name: 'FUNCTIONS_EXTENSION_VERSION'
          value: '~4'
        }
        {
          name: 'FUNCTIONS_WORKER_RUNTIME'
          value: 'dotnet'
        }
        {
          name: 'OpenAIApiKey'
          value: openAIApiKey
        }
        {
          name: 'TableConnectionString'
          value: 'DefaultEndpointsProtocol=https;AccountName=${storageAccount.name};EndpointSuffix=${environment().suffixes.storage};AccountKey=${storageAccount.listKeys().keys[0].value}'
        }
      ]
      ftpsState: 'Disabled'
      minTlsVersion: '1.2'
    }
    httpsOnly: true
  }
}

// Application Insights
resource applicationInsights 'Microsoft.Insights/components@2020-02-02' = {
  name: 'ai-${functionAppName}'
  location: location
  kind: 'web'
  properties: {
    Application_Type: 'web'
    Request_Source: 'rest'
  }
}

// Output the function app URL
output functionAppUrl string = 'https://${functionApp.properties.defaultHostName}/api/WordUpBot'

Independent Implementation (Docker)

Dockerfile for Word Up! Bot

FROM python:3.9-slim

WORKDIR /app

# Install dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy application code
COPY app.py .
COPY .env .

# Set environment variables
ENV PYTHONUNBUFFERED=1

# Expose port
EXPOSE 8080

# Run the application
CMD ["python", "app.py"]

Python App for Containerized Word Up! Bot

import os
from flask import Flask, request, jsonify
from flask_cors import CORS
import openai
import sqlite3
import datetime
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Initialize Flask app
app = Flask(__name__)
CORS(app)

# Initialize OpenAI client
openai.api_key = os.getenv('OPENAI_API_KEY')

# Initialize SQLite database
def init_db():
    conn = sqlite3.connect('conversations.db')
    cursor = conn.cursor()
    cursor.execute('''
    CREATE TABLE IF NOT EXISTS conversations (
        id INTEGER PRIMARY KEY AUTOINCREMENT,
        user_id TEXT NOT NULL,
        role TEXT NOT NULL,
        content TEXT NOT NULL,
        timestamp TEXT NOT NULL
    )
    ''')
    conn.commit()
    conn.close()

init_db()

@app.route('/chat', methods=['POST'])
def chat():
    try:
        # Parse request data
        data = request.get_json()
        
        if not data:
            return jsonify({'error': 'No request data provided'}), 400
        
        user_id = data.get('user_id')
        message = data.get('message')
        
        if not user_id or not message:
            return jsonify({'error': 'Missing required fields: user_id and message'}), 400
        
        # Get conversation history
        history = get_conversation_history(user_id)
        
        # Prepare messages for OpenAI
        messages = [
            {"role": "system", "content": "You are Word Up! Bot, a helpful assistant that specializes in cloud technologies."}
        ]
        
        # Add conversation history
        for msg in history:
            messages.append(msg)
        
        # Add the current message
        messages.append({"role": "user", "content": message})
        
        # Call OpenAI
        response = openai.ChatCompletion.create(
            model="gpt-4-turbo",
            messages=messages,
            temperature=0.7,
            max_tokens=1000
        )
        
        # Extract assistant's reply
        assistant_message = response['choices'][0]['message']['content']
        
        # Store the conversation
        store_message(user_id, "user", message)
        store_message(user_id, "assistant", assistant_message)
        
        # Return response
        return jsonify({'message': assistant_message})
    
    except Exception as e:
        print(f"Error: {str(e)}")
        return jsonify({'error': str(e)}), 500

def get_conversation_history(user_id, limit=10):
    """
    Retrieve conversation history from SQLite.
    """
    conn = sqlite3.connect('conversations.db')
    cursor = conn.cursor()
    
    cursor.execute(
        "SELECT role, content FROM conversations WHERE user_id = ? ORDER BY timestamp LIMIT ?", 
        (user_id, limit * 2)
    )
    
    results = cursor.fetchall()
    conn.close()
    
    messages = []
    for role, content in results:
        messages.append({"role": role, "content": content})
    
    return messages

def store_message(user_id, role, content):
    """
    Store a message in SQLite.
    """
    conn = sqlite3.connect('conversations.db')
    cursor = conn.cursor()
    
    now = datetime.datetime.now().isoformat()
    cursor.execute(
        "INSERT INTO conversations (user_id, role, content, timestamp) VALUES (?, ?, ?, ?)",
        (user_id, role, content, now)
    )
    
    conn.commit()
    conn.close()

if __name__ == '__main__':
    # Create database if it doesn't exist
    init_db()
    
    # Run the app
    port = int(os.getenv('PORT', 8080))
    app.run(host='0.0.0.0', port=port)

Docker Compose for Word Up! Bot

version: '3'

services:
  word-up-bot:
    build: .
    ports:
      - "8080:8080"
    volumes:
      - ./data:/app/data
    environment:
      - OPENAI_API_KEY=${OPENAI_API_KEY}
    restart: unless-stopped

Requirements.txt for Word Up! Bot

flask==2.3.3
flask-cors==4.0.0
openai==1.3.5
python-dotenv==1.0.0
gunicorn==21.2.0

Frontend Implementation (example page-not connected to backend)

Word Up! Bot – OpenAI GPT Assistant

Word Up! Bot

Powered by OpenAI GPT

Cloud Technology Expert

AWS

Ask me about Amazon Web Services, Lambda, S3, EC2, and more.

GCP

Ask me about Google Cloud Platform, Cloud Functions, BigQuery, and more.

Azure

Ask me about Microsoft Azure, Functions, Cosmos DB, and more.

GPT Model Implementation Details

GPT Model Selection Guide

When integrating with OpenAI’s GPT models, there are several options to consider:

  1. GPT-3.5 Turbo
    • Best for: General purpose tasks, cost-efficiency
    • Context window: 16K tokens
    • Cost: ~$0.0015 per 1K tokens (input), ~$0.002 per 1K tokens (output)
  2. GPT-4 Turbo
    • Best for: Complex reasoning, advanced capabilities
    • Context window: 128K tokens
    • Cost: ~$0.01 per 1K tokens (input), ~$0.03 per 1K tokens (output)
  3. GPT-4o
    • Best for: Multimodal tasks (text + vision)
    • Context window: 128K tokens
    • Cost: ~$0.005 per 1K tokens (input), ~$0.015 per 1K tokens (output)

For the Word Up! Bot, GPT-4 Turbo provides the best balance between capabilities and cost for cloud technology discussions.

Cost Comparison Across Cloud Platforms

Cost Analysis

The cost breakdown for a Word Up! Bot with approximately 10,000 conversations per month:

  1. Infrastructure Costs
    • AWS: ~$4-5/month (Lambda, API Gateway, DynamoDB)
    • GCP: ~$3.60-4.50/month (Cloud Functions, API Gateway, Firestore)
    • Azure: ~$5.20-6.00/month (Functions, API Management, Table Storage)
    • Self-hosted: ~$5-20/month (VPS)
  2. OpenAI API Costs (dominate total cost)
    • Average cost per conversation (~500 tokens input, ~750 tokens output):
      • GPT-3.5 Turbo: $0.002 per conversation ($20/month)
      • GPT-4 Turbo: $0.03 per conversation ($300/month)
      • GPT-4o: $0.015 per conversation ($150/month)
  3. Key Differences
    • AWS offers the strongest free tier and easier scalability
    • GCP provides slightly lower storage costs
    • Azure has integrated OpenAI options but higher API management costs
    • Self-hosted offers more control but requires maintenance
  4. Recommendation
    • For smaller implementations: Start with AWS due to free tier benefits
    • For integration with existing cloud services: Match your current provider
    • For cost optimization: Use GPT-3.5 for simple queries, GPT-4 for complex ones

Advanced Features and Customizations

Prompt Engineering for Cloud Discussions

Enhance your Word Up! Bot with specialized system prompts:

system_prompt = """
You are Word Up! Bot, a specialized cloud technology assistant focused on AWS, GCP, and Azure.

For each cloud provider question:
1. Explain the service/concept clearly
2. Provide practical code examples when relevant
3. Compare to equivalent services on other cloud platforms
4. Note important pricing considerations
5. Address security best practices

Your specialty is helping users understand cloud services across platforms.
"""

Adding Custom Knowledge Base

Implement a vector database to store specialized knowledge:

Vector Database Integration

import os
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.document_loaders import DirectoryLoader, TextLoader
import openai

# Load documents (cloud service documentation)
loader = DirectoryLoader('./cloud_docs/', glob="**/*.md", loader_cls=TextLoader)
documents = loader.load()

# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_documents(documents)

# Initialize embeddings
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))

# Create vector store
vector_store = Chroma.from_documents(texts, embeddings, persist_directory="./cloud_kb")

# Create retrieval chain
retriever = vector_store.as_retriever(search_kwargs={"k": 3})

def enhance_with_knowledge_base(query):
    """Enhance a query with relevant information from the knowledge base."""
    # Get relevant documents
    docs = retriever.get_relevant_documents(query)
    
    # Format as context
    context = "\n\n".join([f"Document {i+1}:\n{doc.page_content}" for i, doc in enumerate(docs)])
    
    # Create enhanced prompt
    enhanced_prompt = f"""
    Answer the following question about cloud technologies. 
    Use the context provided if relevant, but you don't need to use it if you already know the answer.
    
    Context:
    {context}
    
    Question: {query}
    """
    
    return enhanced_prompt

Multi-Cloud Design Patterns

Security Best Practices

OpenAI API Security

  1. API Key Management
    • AWS: Use Secrets Manager
    • GCP: Use Secret Manager
    • Azure: Use Key Vault
    • All: Rotate keys regularly
  2. Input Validation
    • Implement rate limiting
    • Validate and sanitize all user inputs
    • Apply token limits to prevent abuse
  3. Content Filtering
    • Implement pre-processing filters for harmful inputs
    • Use OpenAI’s moderation API
    • Have clear escalation processes for problematic content

Cloud-Specific Security

Security Configuration

# AWS Security Configuration
aws:
  lambda:
    # Use IAM roles with least privilege
    execution_role:
      managed_policies:
        - AWSLambdaBasicExecutionRole
      inline_policies:
        - Effect: Allow
          Action:
            - dynamodb:Query
            - dynamodb:PutItem
          Resource: arn:aws:dynamodb:*:*:table/WordUpBotConversations
    
    # Configure VPC if needed
    vpc_config:
      enabled: true
      security_groups:
        - sg-12345678
      subnets:
        - subnet-12345678
        - subnet-87654321
  
  api_gateway:
    # Enable WAF
    waf:
      enabled: true
      rules:
        - name: RateBasedRule
          priority: 1
          rate_limit: 100
    
    # Use API keys for authentication
    api_key_required: true
    
    # Enable logging
    logging:
      enabled: true
      log_level: ERROR

# GCP Security Configuration
gcp:
  cloud_functions:
    # Use service accounts with minimal permissions
    service_account: [email protected]
    
    # Set ingress settings
    ingress_settings: ALLOW_INTERNAL_ONLY
    
    # Enable VPC connector
    vpc_connector: projects/project-id/locations/region/connectors/connector-name
  
  firestore:
    # Set up security rules
    rules: |
      rules_version = '2';
      service cloud.firestore {
        match /databases/{database}/documents {
          match /conversations/{document=**} {
            allow read, write: if false;  // Only backend access
          }
        }
      }

# Azure Security Configuration
azure:
  functions:
    # Authentication settings
    auth:
      enabled: true
      auth_level: function
    
    # Network restrictions
    network:
      ip_security_restrictions:
        - ip_address: 1.2.3.4/32
          action: Allow
    
    # Use managed identity
    identity:
      type: SystemAssigned
      
  table_storage:
    # Enable encryption
    encryption:
      services:
        table:
          enabled: true
      key_type: Account

Conclusion and Next Steps

Word Up! Bot provides a powerful way to engage with cloud technology information using OpenAI’s GPT models. The implementation across AWS, GCP, and Azure demonstrates the flexibility of integrating AI assistants with cloud infrastructure.

For optimal results:

  1. Choose the GPT model that balances capability with cost for your specific use case
  2. Start with a cloud provider that aligns with your existing infrastructure
  3. Implement robust security measures, especially for API key management
  4. Consider adding a knowledge base for specialized cloud documentation
  5. Monitor and optimize costs as usage increases

By extending Word Up! Bot with additional features like:

  • Support for multi-turn conversations
  • User feedback loops for improvement
  • Domain-specific knowledge augmentation
  • Integration with cloud provider documentation
  • Cost optimization based on query complexity

You can create an even more powerful cloud technology assistant that helps users better understand and implement multi-cloud strategies.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top